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Abstract— Deep Neural Networks (DNNs) have achieved
state-of-the-art results across various applications in the recent
years, with some of the best results obtained with deeper
networks and large training sets. On the other hand, the
increasing size of such models restricts their deployability
for consumer applications on resource-limited devices such as
mobile and portable devices. As a result, there has been a lot
of interest in different methods to perform model compression
and acceleration, and tremendous progress has been made in
this area in the past few years. In this paper, we provide
a comprehensive survey of recent advanced techniques for
deep convolutional neural network (CNN) compression and
acceleration. Specifically, we provide insightful analysis of the
techniques categorized as the following: network quantization,
network pruning, low-rank approximation, knowledge distil-
lation and compact network design. Then, we select some
of the more successful methods and study them more in
details, providing meaningful evaluation of the model and its
performance. Finally, we discuss the topic’s challenges and
possible applications of the surveyed methods.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have
achieved remarkable performance across a wide range of
applications, including but not limited to computer vision,
speech recognition, natural language processing and machine
translation. The 2010s saw dramatic progress in image pro-
cessing, with the work of Krizhevsky et al. [3] achieving
breakthrough results in the 2012 ImageNet Challenge using
a network containing 60 million parameters with five convo-
lutional layers and three fully-connected layers, along with
the newly-introduced (at the time) dropout [15] method to
reduce overfitting. This is considered by most the beginning
of the deep learning revolution, which has led to an increased
interest in the field. Since then, the performance of DNNs has
continued to improve. The general trend has been to make
deeper and more complicated networks in order to achieve
higher accuracy, with recent breakthroughs being closely
connected to the increased amount of training data and more
powerful computing resources now made available, most
notably the very fast and power-hungry Graphic Processing
Units (GPUs).

However, these advances to improve the network’s per-
formance for a given task are not necessarily making the
networks more efficient with respect to size and speed. In
many real world applications, such recognition tasks need to
be carried out on resource-limited platforms such as mobile
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and portable devices. In addition, recent years have seen
significant progress in virtual reality (VR), augmented reality
(AR) and smart wearable devices such as smart watches,
reinforcing interest in deep learning systems deployment to
portable devices with limited resources (e.g. CPU, memory,
energy). As a result, there has been a growing interest in
model compression and acceleration from the deep learning
community, with significant progress being achieved in the
past few years.

In this paper, we present a comprehensive survey of recent
approaches in deep neural networks model compression
and acceleration. We classify these approaches into five
categories: network quantization, network pruning, low-rank
approximation, knowledge distillation and compact network
design. In general, the computational complexity of deep
neural networks is dominated by the convolutional layers,
while the number of parameters is mainly observed in the
fully connected layers. Therefore, most network acceleration
methods focus on decreasing computational complexity of
the convolutional layers, while the compression methods
usually center their attention on the fully connected layers or
feature maps of the convolutional layers. After our review of
the different techniques, we select some of the more popular
and successful methods to study them more carefully with
our own implementation, providing meaningful evaluation of
the model and its performance.

II. NETWORK QUANTIZATION

Quantization is the process of constraining an input to a
discrete set of values that closely approximates the original
data. In recent years, network quantization has been used as a
term to cover a lot of different techniques to store parameters
and perform calculations on them in more compact formats.
In general, this method compresses the original network by
reducing the number of bits required to represent each weight
and/or activation.

There are generally two approaches to quantization: con-
vert a pre-trained floating point deep neural network model
into a quantized model without training, and train a quantized
network model. During the forward pass, both at run-time
and train-time (if train-time applies), the networks drastically
reduce memory size and accesses, and in the case of binary
networks replace most arithmetic operations with bit-wise
operations, drastically reducing power consumption.

Before getting into the different quantization methods,
let us start by explaining the difference between floating
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point and fixed point representation, which constitute the
heart of these methods. Traditionally, numbers stored and
calculations performed in neural networks are done in 32-
bit floating point format to preserve high precision, but this
leads to models of larger size which generally require more
computational resources (depending on the hardware used of
course). In a floating point representation, a number’s radix
point (decimal point) can float relative to the significant digits
of the number. This position is indicated by the exponent
component as shown in Fig. 1 and its size will vary. The
integer portion of the number is stored in the mantissa.
On the other hand, the fixed point format consists in a
signed mantissa and a scaling factor shared between all
fixed point variables, namely shared exponent in Fig. 1. The
scaling factor can be seen as the position of the radix point.
Essentially, this data type is an integer that is scaled by
an implicit specific factor. Unlike floating point data types,
this factor is the same for all values of the same type. This
allows for smaller memory usage, and in many cases faster
computation.

Fig. 1. A comparison of the floating point and fixed point format[8].

The fixed point implementation in [7] proposed an ap-
proach to convert a pre-trained floating point deep convolu-
tional network model to its fixed point equivalent. Their bit-
widths optimization strategy based on signal-to-quantization-
noise-ratio (SQNR) resulted in > 20% reduction in model
size for a pre-trained network on CIFAR-10 benchmark while
maintaining the same accuracy. Meanwhile, the authors in [8]
reduced the precision of the parameters and operations during
training with three distinct formats: half precision floating
point, fixed point and dynamic fixed point. They managed to
achieve near state-of-the-art test error, proving that very low
precision is sufficient not just for running trained networks
but also for training them. The work by the authors in [10]
also arrive to a similar conclusion: by using stochastic round-
ing, they found that using a 16-bit wide fixed-point number
representation for a network’s parameters (and intermediate
variables during back-propagation) is sufficient to train a
deep neural network and obtained nearly identical results as
32-bit floating-point computations.

The proposed method in [5], referred to as Quantized Neu-
ral Networks (QNNs), quantizes the weights and activations
during inference and training. The authors showed that QNNs
with weights and activations quantized to more than 1-bit
(e.g. 4-bit and 6-bit) are capable of achieving comparable

results to the 32-bit floating point architectures on bench-
mark datasets. They also demonstrated that Binarized Neural
Networks (BNNs), the extreme case of quantization, can
handle the same datasets while achieving nearly state-of-the-
art prediction accuracy. Extending on the subject at hand in
[5], recent work [11] proposed WAGE quantization: weight
(W) and activation (A) in inference, gradient (G) and error
(E) in backpropagation training. Constraining the parameters
and computations to low-bitwidth integers, WAGE achieved
state-of-the-art accuracy on multiple benchmark datasets.

The BinaryConnect method proposed in [9] constrains
all weights to be either +1 or −1 during the forward
and backward propagations, which allows for most of the
multiply-accumulate operations (MAC) to be replaced by
simple additions or subtractions. This potentially allows to
speed-up by a factor of 3 during training, but also reduces
the memory requirement of deep networks while maintaining
near state-of-the-art results in classification.

Given only weight quantization, there is still a need for
the necessary time-consuming floating-point operations. If
the activations were also quantized into fixed-point values,
the network can be efficiently executed by only fixed-point
operations. In [4], the authors introduce BNNs with both
weights and activations quantized into either +1 or −1
at run-time and train-time, achieving nearly state-of-the-
art results on the MNIST, CIFAR-10 and SVHN datasets.
Note that the binary activations are especially important for
ConvNets, where there are typically many more neurons than
free weights. To extend on BNNs for classification on large
scale datasets, the authors in [6] further analyze different
overlooked strategies to improve accuracy and compression
rate. Compared to [4], the proposed method in [6] results
in a model compressed by a factor of 3 (or a compression
rate of 31.2 as opposed to 10.3) that outperforms previous
state-of-the-art methods.

III. NETWORK PRUNING

Pruning neural networks isn’t anything new, it’s actually
an idea that was proposed way before deep learning be-
came popular. Early work such as [1] showed that network
pruning is effective in reducing network complexity by
removing unimportant weights, and results in a network
with better generalization and improved learning speed that
could require a smaller training dataset to achieve similar
performance. Based on the idea that many parameters in
DNNs are unimportant or redundant, a plethora of pruning
techniques have been studied to compress DNN models,
trying to remove parameters which don’t contribute a lot
to the performance of the model. Furthermore, we observe
two popular methods of pruning: fine-grained pruning and
filter-level pruning.

A. Fine-grained Pruning

Fined-grained pruning methods remove any unimportant
parameters in the network (e.g. weights, connections, etc.)
in an unstructured way. As previously mentioned, this type
of method has been used both to reduce network complexity
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and address the over-fitting issue by improving network gen-
eralization. Looking at the history of neural network pruning
methods, we notice that the first techniques introduced in
early work such as the Optimal Brain Damage [1] and related
papers have been mainly focused on removing unimportant
weights, connections or neurons from a network. The method
in OBD [1] reduced the number of connections based on
the Hessian of the loss function. An interesting overview of
early pruning algorithms can be found in [2]. These methods
usually required additional computation to determine the
parameters the prune, such as the saliency for each weight
computed using a diagonal Hessian approximation in [1].
Nowadays, model pruning methods are still very popular
as a means for model compression, but recent techniques
usually focus on computationally efficient solutions. For
example, magnitude-based weight pruning methods have
become popular techniques for network pruning: they’re
usually computationally efficient, scaling to large networks
and datasets.

In recent years, methods such as [13] have managed to
prune state-of-the-art CNN models, reducing the number of
connections by 9× to 13× with no loss in accuracy. The
initial dense training phase learns the connection weights
and importance via normal network training, as illustrated
in Fig. 2. Then, the sparse training prunes low-weight
connections, effectively converting the dense network into a
sparse network, and trains the sparse network. Finally, the
sparse network is retrained so the remaining connections
can compensate for the connections that were previously
removed.

Fig. 2. An illustration of the typical training pipeline for pruning weights
(a) accompanied by a comparison of the pruned network (b)[13].

In very similar fashion, the authors of [12] proposed
a Dense-Sparse-Dense training flow, as shown in Fig. 3,
replacing the final sparse retraining by a dense layer training
to the previously proposed method by [13]. Technically, by
recovering the pruned connections in the final dense training,
the model capacity of the network is increased and thus the
final network model isn’t really compressed. Nonetheless,
this method is worth mentioning since it achieves superior
optimization performance without affecting model size. DSD
methodology effectively improves Top1 accuracy of popular
networks on benchmark datasets.

Other alternatives to reduce network complexity have been
suggested. [14] proposed a HashedNets model that used a
low-cost hash function to group weights into hash buckets
for parameter sharing. That way, all connections within the

Fig. 3. The Dense-Sparse-Dense training flow[12].

same hash bucket share a single parameter value. The method
exploits parameter redundancy in neural networks to achieve
significant reductions in model sizes. The deep compression
method in [16] reduced the storage required by 35× to 40×
by pruning the unimportant connections just like [13], and
further quantized the network using weight sharing followed
by encoding the quantized weights with Huffman encoding
to save additional space. Their weight sharing method used
a k-mean clustering algorithm to find good clusters for the
weights, adopting the centroids as quantization points for a
cluster. All things considered, their deep compression method
allowed for a significant model size reduction, as well as
3× to 4× layerwise speedup and 3× to 7× better energy
efficiency.

However, these unstructured methods of pruning tend
to introduce irregular sparsity in the network, limiting the
support of these networks by off-the-shelf libraries. There-
fore, specialized hardware and software are often needed for
efficient inference, once again limiting their use in real-world
applications.

B. Filter-level Pruning

In contrast to fine-grained pruning, filter-level pruning
methods prune complete convolutional filters or channels in
order to make the networks thinner, where no difference
in network structure is observed. This allows for support
by any off-the-shelf deep learning libraries (e.g. PyTorch
[35], Tensorflow [36], etc.). By removing whole filters in
the network along with their connecting feature maps, filter-
level pruning has become a popular and efficient method to
reduce computation costs, thus accelerating the network. A
general overview of this process is illustrated in Fig. 4.

In [22], the authors presented a filter-level pruning method
named ThiNet. They used the outputs of the next layer (i.e.,
its feature map) in order to guide the pruning in the current
layer. By minimizing the reconstruction error of the next
layer’s feature map, the important channels are selected in
a greedy manner. Moreover, their method achieved 3.31×
floating point operations per second (FLOPs) reduction and
16.63× compression on VGG-16 network with little drop in
accuracy.

Another approach to filter-level pruning was proposed by
[21], where they pruned filters with relatively low kernel
weight magnitudes. Previous work pruned on a layer by
layer basis followed by an iterative fine-tuned retraining to
compensate for any loss of accuracy, where as the method
proposed method here used a one-shot pruning (across mul-
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Fig. 4. Pruning a filter results in removal of its corresponding feature map
and related kernels in the next layer.

tiple layers) and retraining strategy, achieving about 30%
reduction in FLOPs for VGGNet on CIFAR-10.

The authors in [23] evaluated different filter-level pruning
methods based on different criteria (e.g. kernel weight mag-
nitude, activation, mutual information, Taylor expansion) by
comparing them to their oracle criterion, which brute force
pruned each filter and observed its impact on the cost func-
tion. Thus, they stated the pruning problem as combinatorial
optimization problem: choose a subset of parameters, such
that when pruned the network cost change is minimal. Their
newly proposed method, based on the Taylor expansion,
directly approximated change in the loss function from
removing a particular parameter and demonstrated superior
performance. Their proposed method lead to more than 10×
reduction with only a small drop in accuracy.

IV. LOW-RANK APPROXIMATION

Since convolution layers generally consume the bulk of
the processing time in deep CNNs, many methods have
been focused around reducing the complexity of convolution
operations in order to compress the network and speed up
convolution layers. Formally, a convolutional kernel in a
CNN is a 4D tensor W ∈ RN×d×d×C , where N and C are
the numbers of the output and input feature maps respectively
and d is the spatial kernel size. The motivation behind tensor
decomposition is to find a tensor approximation of W by
removing the redundancy in the convolution kernels.

Fig. 5. A typical parametrization of the low-rank regularization method.
Left: the original convolutional layer. Right: low-rank constraint convolu-
tional layer with rank-K[17].

Using low-rank filters to accelerate convolution has a long
history. Many low-rank based methods have been proposed
over the years, most notably [18]. In their paper, the authors
introduced a method for accelerating the convolution com-
putation based on the existence of significant redundancy
between different filters and feature channels. The proposed
tensor decomposition scheme is based on a conceptually
simple idea: replace the 4D convolutional kernel with two
consecutive kernels with a lower rank, in other words a
two-component decomposition. In this case, the 4D kernel
tensor is presented as a composition (product) of two 3D
tensors. The resulting approximations require significantly
less operations to compute, which translates to a 4.5×
speedup with a drop of only 1% in accuracy. The network is
approximated layer by layer: after one layer is approximated
by the low-rank filters, the parameters of that layer are fixed,
and the layers above are fine-tuned based on a reconstruction
error criterion. This typical low-rank method for compressing
2D convolutional layer is described in Fig. 5.

Following this direction, the authors in [20] proposed a
low-rank Canonical Polyadic (CP) decomposition using non-
linear least squares (NLS) combined with a discriminative
fine-tuning of the entire network simultaneously. The CP-
decomposition approximates the convolution as a composi-
tion of four convolutions with small kernels, as shown in
Fig. 6. This four-component decomposition combined with
a new algorithm to compute the CP-decomposition achieved
considerable speedups with very minimal loss in accuracy.

Fig. 6. Tensor decompositions for speeding up a convolution. Two-
component decomposition (b) as proposed in [18] and CP-decomposition
(c) used in [20].

Related to [18] and [20], the authors in [17] proposed
a different algorithm for computing the low-rank tensor
decomposition on much larger models. The proposed tensor
decomposition is in line with the one presented by [18],
but the algorithm finds the exact global optimizer of the
decomposition and is more effective than iterative methods
like [18]. The new method for training such constrained
CNNs from scratch achieved significant speedup as well as
better performance than their non-constrained counterparts
in some cases.

Based on the fact that deep networks are trained with a
large number of output targets, the authors in [19] focused
their efforts solely on the final weight layer. Applying a
low-rank matrix factorization to this final layer allowed for
a reduction in the number of parameters of the network
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between 30−50%, resulting in a similar 30−50% speedup in
training time with little loss in accuracy in large vocabulary
continuous speech recognition (LVCSR) tasks.

V. KNOWLEDGE DISTILLATION A.K.A
TEACHER-STUDENT NETWORKS

The idea of knowledge distillation (KD) is to make a
small student network imitate the target of a large teacher
network. In this sense, a student network is trained using
a teacher network or the ensemble of neural networks (a
collection of model whose predictions are combined by
weighted averaging or voting), and the student network
is a compact and efficient neural network. This idea was
proposed by [27], in which they compressed the original
network by training a new compact network with pseudo-
data labeled from a larger and stronger network/ensemble.
This resulted in mimic neural nets that were 1000× smaller
and faster.

Following this, [28] proposed a knowledge distillation
method which trained a student network by the softened
output of the teacher network, which also showed that soft
targets are a good way to train a network with fewer samples
while preventing overfitting. The student network was trained
to predict the output of the teacher as well as the true
classification labels, and demonstrated promising results.

The method presented by [30] is also based on the student-
teacher framework, but it introduced the concept of using
multiple teachers in order to improve regularization. To do
so, they injected noise and perturbed the output of the
teacher, simulating the effect of multiple teachers with a
noisy teacher. This resulted in promising improvement in
classification accuracy.

The authors of [29] extend the compression method to
the training dataset by presenting data-free knowledge dis-
tillation. The teacher network was initially trained on the
original dataset, after which the activations of each layer
in the network were recorded in order to reconstruct the
original dataset. The student network was then trained on
the reconstructed dataset from the teacher model and its
metadata. This allowed to compress deep networks trained on
large-scale datasets to a fraction of their size, but also showed
that the compact network can be trained without access to
the original large-scale dataset.

In [31], the authors used a common initialization trick to
further improve the distillation performance of classification,
which can also boost the distillation on non-classification
tasks. They extended the previous distillation framework by
transferring the distilled knowledge from classification to
face alignment and verification.

More recently, [32] proposed two new compression meth-
ods which jointly leveraged weight quantization and knowl-
edge distillation of larger networks. The first method, quan-
tized distillation, leveraged distillation loss[28] during the
training process of a student network whose weights were
quantized. The second method, differentiable quantization,
provided a way of optimizing the locations of quantization
during the learning process of the student in order to best

fit the behavior of the teacher model. Both methods showed
promising results in terms of compression while preserving
accuracy close to state-of-the-art full-precision models.

VI. COMPACT NETWORK DESIGN

Another approach to network acceleration and compres-
sion is to design a more efficient but low-cost network
architecture itself. Among the commonly used strategies
to reduce network complexity, branching (multiple grouped
convolutions) is probably the most popular. Initially intro-
duced in AlexNet [3] as a way to share the convolution
computation across two GPUs, grouped convolutions work
as follow: the input and kernel are split by their channels,
i.e. channel-wise, to form distinct groups, and each group
performs convolutions independent of the other groups to
give different outputs. These individual outputs are then
concatenated together to give the final output. This process
is illustrated in Fig. 7.

Fig. 7. Standard convolution vs Grouped convolution.

A special case of grouped convolutions is when the
number of groups equals the number of input channels,
also called depthwise convolutions, which form a part of
separable convolutions. Separable convolutions, referred to
as depthwise separable convolutions in most cases, consist
of two consecutive convolution operations: (1) depthwise
convolutions which performs convolutions separately for
each channel of the input, followed by (2) a point-wise
convolution (convolution with 1×1 filter). ResNeXt [25] was
presented in a similar fashion and referred to the number of
groups or branches as the cardinality of the network. Their
model allowed them to place second in the 2016 ILSVRC
competition. In MobileNet [24], depthwise separable con-
volutions allowed to create very small models that retained
much of the capabilities of far larger architectures by making
more efficient use of parameters. The resulting MobileNet
can be nearly as accurate as VGG-16 while being 32×
smaller and 27× faster.

More recently, [26] introduced a convolutional architec-
ture for sequence-to-sequence tasks like translation, namely
SliceNet, also based on the use of depthwise separable
convolutions. It extended on previous work such as [24] to
indicate that standard convolutions can be replaced with dept-
wise separable convolutions in order to obtain a model that is
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simultaneously cheaper to run and smaller, while maintaining
state-of-the-art accuracy.

VII. EVALUATION

Now that we have surveyed the different methods, we have
chosen to study quantization and compact network design
from the categories presented beforehand and implemented
them in order to evaluate their performance. We have chosen
to implement VGGNet [33] (16 layers, configuration D) as
the baseline model in order to compare and evaluate the
different methods. We train our different implementations of
the network on the popular benchmark dataset CIFAR-10. A
slight modification was made to the the structure of the fully-
connected layers of the network described in [33]. Since we
are working with CIFAR-10 dataset (images 32 × 32 × 3)
instead of ImageNet (images 224× 224× 3) as in the paper,
we replaced the three fully-connected layers with one fully-
connected layer of input size 512 (1×1×512). This change
has a sizeable impact in terms of number of parameters,
but we should still be able to observe a difference between
the different methods in comparison. Moreover, our training
method uses a batch size of 128 instead of 256 since the
dataset used is smaller than the original ImageNet. A quick
overview of the training and testing information is shown in
Table I. The implementation and evaluation was done using
the popular framework PyTorch [35]. We also made our code
available1.

TABLE I
TRAINING AND TESTING OVERVIEW

Dataset Dimension Labels
CIFAR-10 3072 (32 x 32 color) 10

Training set Test set Training epochs
50K 10K 200

Our architecture implementation based on VGG-16 [33]
can be seen in Table III, along with our compact archi-
tecture. Note that the last softmax layer is not necessary
in the main model, because we use a loss during training
called cross entropy that combines the log softmax with
the negative log likelihood (more stable than using softmax
straightaway).

A. Quantization

From 16-bit, to 8-bit and even down to 1-bit, differ-
ent quantization methods have recently been explored and
tested in order to reduce model size for storage as well
as computational resources. Although many of the recent
papers also explore quantization during the training phase,
the need for lower bitwidth inference is even greater with
modern applications’ deployment needs on resource limited
hardware. Additionally, many of the models that we already
use and know well are available on our favorite frameworks
as pre-trained models, so being able to convert them directly
to their quantized form is very convenient. Thus, we chose

1https://github.com/laggui/nn compress

to implement our quantization algorithm to convert a pre-
trained floating point model in order to use its quantized
form for inference, the most important part when deploying
it on limited resource hardware. In order to convert the pre-
trained model to its quantized counterpart, we make use of
PyTorch’s [35] nn.Module’s dictionary to convert the values
of the different parameters and layers’ activations.

Sadly, at the time of writing, PyTorch [35] doesn’t support
lower bitwidth operations (e.g 8-bit fixed-point operations),
while Tensorflow [36] does (for the most part). This support
is expected to appear with the release of PyTorch 1.0
(currently 0.4.0). As a result, our implementation is more of a
simulation since the quantized network will still be computed
with 32-bit floating point representation of the tensors and
floating point arithmetic.

In Tensorflow [36], quantized data types (i.e., quantized
8-bit signed or unsigned integer, quantized 16-bit signed or
unsigned integer) were implemented to represent the type of
the elements in a tensor, which are used with a low-precision
general matrix to matrix multiplication (GEMM) framework
to compute low bitwidth arithmetic. This allows for lower
bitwidth calculations at train-time when implemented in
the training loop, and more importantly during inference.
The quantization process stores the minimum and maximum
value of a tensor in 32-bit floating point representation, and
compresses the tensor’s float elements in the range of the
chosen quantized data type. It is important to note that
the intermediate results are stored in 32-bit floating point
representation to preserve full accuracy, and that the values
are only compressed to their quantized counterpart before
computing some of the operations available in quantized
form or when returning the results. The quantization process
in Tensorflow [36] can be summarized by the flowchart
presented in Fig. 8.

Fig. 8. Tensorflow quantization implementation. The original operation
with float inputs and outputs (a) and the equivalent flow of operations with
lower bitwidth operations (b).

While there are many different quantization methods such
as the linear quantization presented in [5], our implementa-
tion is based on Tensorflow’s [36] representation for quan-
tized tensors. This is represented with two floats that store the
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overall minimum and maximum values corresponding to the
lowest and highest quantized value of a tensor. Each element
in the quantized tensor represents a float value in that range,
distributed linearly between the minimum and maximum. For
example, with a minimum of -15.0 and a maximum of 25.0,
the 8-bit quantized values are represented as in Table II.

TABLE II
QUANTIZED VALUE RANGE EXAMPLE

Stored float Quantized value
−15.0 0
5.0 128
25.0 255

Though as previously mentioned, PyTorch [35] doesn’t
support lower bitwidth calculations at the time of writing,
thus our quantization implementation is more of a simulation.
In other words, the values of the model’s weights and
activations are converted to their 8-bit counterpart and then
converted back to 32-bit floats, and inference is completed
on the quantized-dequantized values since the framework
doesn’t currently support quantized operations. Therefore,
the drop in accuracy observed in Table V is only due to
the error introduced by quantizing and dequantizing the
values. If PyTorch [35] were to support inference with
lower bitwidth operations, the quantization process would be
similar to the one shown in Fig. 8. In this case, quantization
would effectively reduce model size for storage as well as
computational resources during inference.

B. Compact Network Design

In order to have more comparable results, we chose to im-
plement the VGG-16 architecture with depthwise separable
convolutions. Our compact VGG-16 architecture (as shown
in Table III) is based on the MobileNet [24] implementation,
replacing all of the standard convolutions with depthwise
separable convolutions except for the first layer which is a
full convolution, using both batchnorm and ReLU nonlinear-
ities for both layers of the depthwise separable convolution.
Theoretically, this factorization has the effect of drastically
reducing computation and model size. In practice, the effi-
ciency of this method also depends on the implementation
within the framework used (here, PyTorch [35]).

As we all know, a standard convolution both filters and
combines inputs into a new set of outputs in one step. On the
other hand, the depthwise separable convolution splits this
into two layers: a separate layer for filtering (the depthwise
convolution) and a separate layer for combining the new
features (the point-wise convolution). Fig. 9 shows how a
standard convolution is factorized to the two-step depthwise
separable convolution.

To better understand how the use of depthwise separa-
ble convolutions reduces computation and model size, let’s
compare this operation to the standard convolution. Let us

2The convolutional layer parameters are denoted as “conv〈receptive field
size〉〈/type〉-〈number of channels〉”. The ReLU activation function and batch
normalizations are not shown for brevity.

TABLE III
CONVNET CONFIGURATIONS FOR OUR BASE VGG-16 ARCHITECTURE

AND THE COMPACT VGG-16 ARCHITECTURE WITH DEPTHWISE

SEPARABLE (DW) CONVOLUTIONS.

ConvNet Configuration2

VGG-16 Compact VGG-16
conv3-64 conv3-64
conv3-64 conv3/dw-64

Maxpool
conv3-128 conv3/dw-128
conv3-128 conv3/dw-128

Maxpool
conv3-256 conv3/dw-256
conv3-256 conv3/dw-256
conv3-256 conv3/dw-256

Maxpool
conv3-512 conv3/dw-512
conv3-512 conv3/dw-512
conv3-512 conv3/dw-512

Maxpool
conv3-512 conv3/dw-512
conv3-512 conv3/dw-512
conv3-512 conv3/dw-512

Maxpool
FC-10

Fig. 9. The standard convolutional filters in (a) are replaced by a depthwise
seperable filter. This filter is composed of a depthwise convolution in (b)
and a pointwise convolution in (c)[24].
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consider the input of a convolutional layer, a feature map F
of size DF ×DF ×M , where DF is the spatial width and
height of a square input feature map and M is the number of
input channels (input depth). A standard convolutional layer
is parametrized by a kernel K of size DK ×DK ×M ×N ,
where DK is the spatial dimension of the kernel (assumed
to be symmetrical), M is the number of input channels as
previously defined and N is the number of output channels
(output depth). This convolutional layer produces an output
feature map G of size DG × DG × N , where DG is the
spatial width and height of a square output feature map and
N is the number of output channels as previously defined.

We assume that the output G has the same dimensions as
the input F, therefore DF = DG. This is assumed because
of the configuration of our convolution but can be calculated
using the formula in (1), which is explained in detail in [34].

DG =
⌊DF + 2p−DK

s

⌋
+ 1 (1)

where s is the stride size and p the amount of zero padding
along both axes.

Equation (1) represents the most general case, convolving
over a zero padded input using non-unit strides. In the most
commonly used case of unit padding (i.e., s = 1), this
relationship is represented in (2). Both (1) and (2) assume
symmetric settings.

DG = (DF −DK) + 2p+ 1 (2)

For DK odd (DK = 2n+ 1, n ∈ N) and p = bDK/2c =
n, a desirable property comes out of (2): DG = DF , thus
the output size is the same as the input size. This is the case
with our implementation of the VGG-16 architecture. The
only changes in size come from the Maxpool layers.

For a standard convolution, DK × DK × M operations
are performed at each position of the input. For the whole
input F taking into account every output channel of G, the
computational cost of a standard convolution is:

DK ·DK ·M ·N ·DF ·DF (3)

where the computational cost depends mutiplicatively on the
kernel size DK × DK , the feature map size DF × DF ,
the number of input channels M and the number of output
channels N .

As previously mentioned, the depthwise separable convo-
lution is made up of a depthwise convolution followed by a
point-wise convolution. By applying a single filter per input
channel, a depthwise convolution has a computational cost
of:

DK ·DK ·M ·DF ·DF (4)

However it only filters input channels, it does not combine
them to create new features. This is where the point-wise
convolution comes in to compute a linear combination of
the output of the depthwise convolutions to generate the new
features. This point-wise convolution has a computational
cost of DF · DF ·M · N , which brings the computational
cost of the full depthwise separable convolution to:

DK ·DK ·M ·DF ·DF +DF ·DF ·M ·N (5)

which is the sum of the depthwise convolution and 1 × 1
point-wise convolution.

By expressing convolution as a two step process of fil-
tering and combining, there is a reduction in computation
of:

DK ·DK ·M ·DF ·DF +DF ·DF ·M ·N
DK ·DK ·M ·N ·DF ·DF

=
1

N
+

1

D2
K

(6)

We can also compute the number of parameters (weights
and bias) for a standard convolution as in (7) and for a
depthwise separable convolution as in (8).

(DK ·DK ·M + 1) ·N (7)

(DK ·DK + 1) ·M + (M + 1) ·N (8)

Let’s take the second convolution layer from our VGG-
16 based architecture and our compact architecture as an
example. The first convolution layer for both architectures
is a 3 × 3 kernel and produces 64 output channels, while
taking an image from the CIFAR-10 dataset as input (size
32 × 32 × 3). Therefore, the second convolution for both
architectures takes an input of size 64. As shown in Table IV,
both the number of parameters and the computational cost are
almost 8× smaller with the depthwise separable convolution.
The reduction in computation is proven by (6).

TABLE IV
COMPUTATIONAL COST AND NUMBER OF PARAMETERS OF A

STANDARD CONVOLUTION VS DEPTHWISE SEPARABLE CONVOLUTION

Standard Depthwise separable

Parameters (3 · 3 · 64 + 1) ·
64 = 36, 928

(3 ·3+1) ·64+(64+
1) · 64 = 4, 800

Computational
cost

3 · 3 · 64 ·
64 · 32 · 32 =
37, 748, 736

3 · 3 · 64 · 32 · 32 +
32 · 32 · 64 · 64 =
4, 784, 128

Our compact architecture uses 3× 3 depthwise separable
convolutions, which uses almost 8-9× less computation than
standard convolutions at the cost of a very small reduction
in accuracy as shown in Table V.

C. Results

The training procedure generally followed [33], with 200
epochs and a training set of 50K images as shown in Table
I. The batch size was set to 128, momentum to 0.9. The
training was regularized by weight decay (the L2 penalty
multiplier set to 5·10−4). The learning rate was initially set to
10−2, and then decreased by a factor of 10 after 100 epochs.
The initialization of the network weights used is the default
method specified by PyTorch [35] for each layer, using a
uniform distribution for convolutional and fully connected
layers with the method described in [37] and filling up the
tensor with values drawn from the uniform distribution for
batch normalization layers.

As illustrated in Table V, our baseline model based on
the VGG-16 [33] architecture achieved 90.03% accuracy on
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the the test dataset with 14.73M parameters, while our com-
pact network achieved extremely similar performance using
almost 9× less parameters and 8-9× less computation. This
impact was also observed during training, where the baseline
model took 11.26 hours to train compared to 2.24 hours
for our compact architecture, a speedup rate accelerating the
training phase by 5×.

TABLE V
RESULTS

Model Accuracy Parameters MACs Model Size
Baseline 90.03% 14.73M 313.2M 56.2 MB
Compact 89.98% 1.70M 38M 6.53MB
Quantized 88.13% 14.73M 313.2M 56.2MB

Our quantized model was also tested on the same dataset,
and, as previously mentioned, was only a simulation of the
process since PyTorch [35] doesn’t support lower bitdwidth
operations yet. Thus, the drop in accuracy observed in Table
V is only due to the error introduced by quantizing and
dequantizing the values. Since the quantization is done on
a pre-trained model, the training time is not applicable
here. In addition, the parameters are still stored using 32-
bit floats and the network is using floating point operations,
thus the different criteria remain the same as the baseline.
Moreover, the simulated quantization actually requires more
computation in order to quantize the different values. In
the case of lower bitwidth operations support, such as in
Tensorflow [36], quantization should have sizeable impact on
model size as well as computational resources. For example,
with 8-bit representation, the model size should effectively
be 4× smaller for the quantized model. The number of
MACs should also be greatly reduced since support for lower
bitwidth operations allows for less computational resources.

All tests were done using Google Colaboratory, a free
Jupyter notebook environment and cloud service with GPU
enabled machines. The specifications of the virtual machine
used are shown in Table VI.

TABLE VI
MACHINE SPECIFICATIONS

CPU 2-core Xeon 2.3GHz
RAM 13GB
Disk 365GB HDD
GPU NVIDIA Tesla K80 12GB

VIII. DISCUSSION

In this paper, we provided a survey and evaluation of
recent works in efficient processing of deep neural networks
(DNNs), more precisely on compressing and accelerating
such networks. Here we discuss on the different compression
approaches and their applications, and point out a few topics
that deserve further investigation in the future.

There is no golden rule to evaluate which of the catego-
rized methods described is the best. The proper approach
chosen really depends on the applications and requirements.
Interestingly, these methods are independently designed and

can greatly complement each other. For example, the deep
compression method in [16] combined network pruning and
quantization in order to achieve impressive storage compres-
sion, as well as great speedup and energy efficiency.

In regards to the application of the different techniques,
some general suggestions can be taken into consideration:

• Network pruning is a generally popular approach that
can always be used to obtain reasonable compression
rate while preserving a very similar accuracy to the
original network.

• When the application involves the use of a small dataset,
the knowledge distillation approach can be an interest-
ing solution. The compressed student model can benefit
from the transferred knowledge of the teacher model,
making a robust network from a small dataset.

• If the application requires a compressed model from
a pre-trained model, methods such as network prun-
ing, low-rank approximation or even quantization when
lower bitwidth operations are supported can be used.
Many open-source tools for different frameworks are
already available online and ready to use for some of
these methods.

We have also shown through our evaluation that a compact
network design can be extremely beneficial in both network
compression and acceleration, improving both the training
phase and inference. Although previous works have shown
great results concerning quantization, it would be interesting
to test the impact of this method on our network when lower
bitwidth operations become available in PyTorch [35], or
by repeating the tests in Tensorflow [36] since it is already
supported by this framework. Another interesting avenue we
would like to explore is filter-level pruning, more particularly
by implementing the method proposed in [21]. As shown in
recent works, filter-level pruning pruning can directly reduce
the feature map width and shrink the model into a thinner
one, but more importantly reduce network complexity thus
accelerating the network. It is efficient but also challenging
because removing filters can dramatically change the input
of the following layer, and it would be interesting to actively
test its effect.

On a final note, we summarized some of the most popular
methods in deep neural networks model compression and
acceleration. This is by no means an exhaustive list of the
existing methods, but as mentioned a survey of the most
popular techniques. And with growing interest in this field
a plethora of new approaches are continuously explored. In
addition to the methods explored in this paper, we would like
to further explore conditional computation in the future. It
operates by selectively activating only parts of the network
at a time, allowing for faster models.

APPENDIX

A detailed breakdown3of our architectures is illustrated in
Table VII and Table VIII respectively.

3The ReLU activation function and batch normalizations were omitted
for brevity, but it is important to note that batchnorm layers introduce new
parameters (one per different channel for convolutions).
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TABLE VII
DETAILED BREAKDOWN OF OUR VGG-16 ARCHITECTURE

INPUT: [32× 32× 3] params: 0 MACs: 0
CONV3-64: [32× 32× 64] params: (3 · 3 · 3 + 1) · 64 = 1, 792 MACs: (3 · 3 · 3 · 64 · 32 · 32) = 1, 769, 472
CONV3-64: [32× 32× 64] params: (3 · 3 · 64 + 1) · 64 = 36, 928 MACs: (3 · 3 · 64 · 64 · 32 · 32) = 37, 748, 736
POOL2: [16× 16× 64] params: 0 MACs: 0
CONV3-128: [16× 16× 128] params: (3 · 3 · 64 + 1) · 128 = 73, 856 MACs: (3 · 3 · 64 · 128 · 16 · 16) = 18, 874, 368
CONV3-128: [16× 16× 128] params: (3 · 3 · 128 + 1) · 128 = 147, 584 MACs: (3 · 3 · 128 · 128 · 16 · 16) = 37, 748, 736
POOL2: [8× 8× 128] params: 0 MACs: 0
CONV3-256: [8× 8× 256] params: (3 · 3 · 128 + 1) · 256 = 295, 168 MACs: (3 · 3 · 128 · 256 · 8 · 8) = 18, 874, 368
CONV3-256: [8× 8× 256] params: (3 · 3 · 256 + 1) · 256 = 590, 080 MACs: (3 · 3 · 256 · 256 · 8 · 8) = 37, 748, 736
CONV3-256: [8× 8× 256] params: (3 · 3 · 256 + 1) · 256 = 590, 080 MACs: (3 · 3 · 256 · 256 · 8 · 8) = 37, 748, 736
POOL2: [4× 4× 256] params: 0 MACs: 0
CONV3-512: [4× 4× 512] params: (3 · 3 · 256 + 1) · 512 = 1, 180, 160 MACs: (3 · 3 · 256 · 512 · 4 · 4) = 18, 874, 368
CONV3-512: [4× 4× 512] params: (3 · 3 · 512 + 1) · 512 = 2, 359, 808 MACs: (3 · 3 · 512 · 512 · 4 · 4) = 37, 748, 736
CONV3-512: [4× 4× 512] params: (3 · 3 · 512 + 1) · 512 = 2, 359, 808 MACs: (3 · 3 · 512 · 512 · 4 · 4) = 37, 748, 736
POOL2: [2× 2× 512] params: 0 MACs: 0
CONV3-512: [2× 2× 512] params: (3 · 3 · 512 + 1) · 512 = 2, 359, 808 MACs: (3 · 3 · 512 · 512 · 2 · 2) = 9, 437, 184
CONV3-512: [2× 2× 512] params: (3 · 3 · 512 + 1) · 512 = 2, 359, 808 MACs: (3 · 3 · 512 · 512 · 2 · 2) = 9, 437, 184
CONV3-512: [2× 2× 512] params: (3 · 3 · 512 + 1) · 512 = 2, 359, 808 MACs: (3 · 3 · 512 · 512 · 2 · 2) = 9, 437, 184
POOL2: [1× 1× 512] params: 0 MACs: 0
FC-512: [1× 1× 10] params: (512 + 1) · 10 = 5, 130 MACs: (512 · 10) = 5, 120

TOTAL params: 14, 719, 818 MACs: 313, 201, 664
with batchnorm: +8, 448 = 14, 728, 266

TABLE VIII
DETAILED BREAKDOWN OF OUR VGG-16 COMPACT ARCHITECTURE

INPUT: [32× 32× 3] params: 0 MACs: 0
CONV3-64: [32× 32× 64] params: (3 · 3 · 3 + 1) · 64 = 1, 792 MACs: (3 · 3 · 3 · 64 · 32 · 32) = 1, 769, 472
CONV3/DW-64: [32× 32× 64] params: (3 · 3 + 1) · 64 + (64 + 1) · 64 = 4, 800 MACs: (3 · 3 · 64 · 32 · 32) + (32 · 32 · 64 · 64) = 4, 784, 128
POOL2: [16× 16× 64] params: 0 MACs: 0
CONV3/DW-128: [16× 16× 128] params: (3 · 3 + 1) · 64 + (64 + 1) · 128 = 8, 960 MACs: (3 · 3 · 64 · 16 · 16) + (16 · 16 · 64 · 128) = 2, 244, 608
CONV3/DW-128: [16× 16× 128] params: (3 · 3 + 1) · 128 + (128 + 1) · 128 = 17, 792 MACs: (3 · 3 · 128 · 16 · 16) + (16 · 16 · 128 · 128) = 4, 489, 216
POOL2: [8× 8× 128] params: 0 MACs: 0
CONV3/DW-256: [8× 8× 256] params: (3 · 3 + 1) · 128 + (128 + 1) · 256 = 34, 304 MACs: (3 · 3 · 128 · 8 · 8) + (8 · 8 · 128 · 256) = 2, 170, 880
CONV3/DW-256: [8× 8× 256] params: (3 · 3 + 1) · 256 + (256 + 1) · 256 = 68, 352 MACs: (3 · 3 · 256 · 8 · 8) + (8 · 8 · 256 · 256) = 4, 341, 760
CONV3/DW-256: [8× 8× 256] params: (3 · 3 + 1) · 256 + (256 + 1) · 256 = 68, 352 MACs: (3 · 3 · 256 · 8 · 8) + (8 · 8 · 256 · 256) = 4, 341, 760
POOL2: [4× 4× 256] params: 0 MACs: 0
CONV3/DW-512: [4× 4× 512] params: (3 · 3 + 1) · 256 + (256 + 1) · 512 = 134, 144 MACs: (3 · 3 · 256 · 4 · 4) + (4 · 4 · 256 · 512) = 2, 134, 016
CONV3/DW-512: [4× 4× 512] params: (3 · 3 + 1) · 512 + (512 + 1) · 512 = 267, 776 MACs: (3 · 3 · 512 · 4 · 4) + (4 · 4 · 512 · 512) = 4, 268, 032
CONV3/DW-512: [4× 4× 512] params: (3 · 3 + 1) · 512 + (512 + 1) · 512 = 267, 776 MACs: (3 · 3 · 512 · 4 · 4) + (4 · 4 · 512 · 512) = 4, 268, 032
POOL2: [2× 2× 512] params: 0 MACs: 0
CONV3/DW-512: [2× 2× 512] params: (3 · 3 + 1) · 512 + (512 + 1) · 512 = 267, 776 MACs: (3 · 3 · 512 · 2 · 2) + (2 · 2 · 512 · 512) = 1, 067, 008
CONV3/DW-512: [2× 2× 512] params: (3 · 3 + 1) · 512 + (512 + 1) · 512 = 267, 776 MACs: (3 · 3 · 512 · 2 · 2) + (2 · 2 · 512 · 512) = 1, 067, 008
CONV3/DW-512: [2× 2× 512] params: (3 · 3 + 1) · 512 + (512 + 1) · 512 = 267, 776 MACs: (3 · 3 · 512 · 2 · 2) + (2 · 2 · 512 · 512) = 1, 067, 008
POOL2: [1× 1× 512] params: 0 MACs: 0
FC-512: [1× 1× 10] params: (512 + 1) · 10 = 5, 130 MACs: (512 · 10) = 5, 120

TOTAL params: 1, 682, 506 MACs: 38, 018, 048
with batchnorm: +15, 872 = 1, 698, 378
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